Analisis
Regresi Pertemuan 5
Halaman
70-71
Latihan
1
Lakukan uji kualitas garis lurus dan
hipotesa slope dan intersep (gunakan rumus-rumus yang sudah diberikan dan
kerjakan di laboratorium komputer)
Kasus
|
IMT
|
GPP
|
Kasus
|
IMT
|
GPP
|
Kasus
|
IMT
|
GPP
|
1
|
18.6
|
150
|
10
|
18.2
|
120
|
19
|
27.0
|
140
|
2
|
28.1
|
150
|
11
|
17.9
|
130
|
20
|
18.9
|
100
|
3
|
25.1
|
120
|
12
|
21.8
|
140
|
21
|
16.7
|
100
|
4
|
21.6
|
150
|
13
|
16.1
|
100
|
22
|
18.5
|
170
|
5
|
28.4
|
190
|
14
|
21.5
|
150
|
23
|
19.4
|
150
|
6
|
20.8
|
110
|
15
|
24.5
|
130
|
24
|
24.0
|
160
|
7
|
23.2
|
150
|
16
|
23.7
|
180
|
25
|
26.8
|
200
|
8
|
15.9
|
130
|
17
|
21.9
|
140
|
26
|
28.7
|
190
|
9
|
16.4
|
130
|
18
|
18.6
|
135
|
27
|
21.0
|
120
|
Hasil :
Regression
Variables
Entered/Removeda
|
|||
Model
|
Variables
Entered
|
Variables
Removed
|
Method
|
1
|
Indeks
Massa Tubuhb
|
.
|
Enter
|
a.
Dependent Variable: Glucose Post Pandial
|
|||
b. All
requested variables entered.
|
Model
Summary
|
||||
Model
|
R
|
R Square
|
Adjusted
R Square
|
Std.
Error of the Estimate
|
1
|
,628a
|
,394
|
,370
|
21,629
|
a. Predictors:
(Constant), Indeks Massa Tubuh
|
ANOVAa
|
||||||
Model
|
Sum of
Squares
|
df
|
Mean
Square
|
F
|
Sig.
|
|
1
|
Regression
|
7617,297
|
1
|
7617,297
|
16,282
|
,000b
|
Residual
|
11695,666
|
25
|
467,827
|
|
|
|
Total
|
19312,963
|
26
|
|
|
|
|
a.
Dependent Variable: Glucose Post Pandial
|
||||||
b. Predictors:
(Constant), Indeks Massa Tubuh
|
Coefficientsa
|
||||||
Model
|
Unstandardized
Coefficients
|
Standardized
Coefficients
|
t
|
Sig.
|
||
B
|
Std.
Error
|
Beta
|
||||
1
|
(Constant)
|
48,737
|
23,494
|
|
2,074
|
,048
|
Indeks
Massa Tubuh
|
4,319
|
1,070
|
,628
|
4,035
|
,000
|
|
a.
Dependent Variable: Glucose Post Pandial
|
Persamaan
garis :
GPP = 48,737+4,319 IMT
Hipotesa
:
Uji
Statistik :
Keputusan
statistik :
Kita menolak Hipotesa nol
Kesimpulan
: Slop garis regresi tidak sama dengan 0 maka garis regresi antara IMT dan GPP
adalah linier.
Latihan
2
Data berat badan dan kadar glukosa darah
orang dewasa sebagai berikut :
Subjek
|
Berat Badan (Kg)
|
Glukosa mg/100ml
|
Subjek
|
Berat Badan (Kg)
|
Glukosa mg/100ml
|
1
|
64.0
|
108
|
9
|
82.1
|
101
|
2
|
75.3
|
109
|
10
|
78.9
|
85
|
3
|
73.0
|
104
|
11
|
76.7
|
99
|
4
|
82.1
|
102
|
12
|
82.1
|
100
|
5
|
76.2
|
105
|
13
|
83.9
|
108
|
6
|
95.7
|
121
|
14
|
73.0
|
104
|
7
|
59.4
|
79
|
15
|
64.4
|
102
|
8
|
93.4
|
107
|
16
|
77.6
|
87
|
Hasil
:
Regression
Variables
Entered/Removeda
|
|||
Model
|
Variables
Entered
|
Variables
Removed
|
Method
|
1
|
Berat
Badan (Kg)b
|
.
|
Enter
|
a.
Dependent Variable: Glukosa (mg/100ml)
|
|||
b. All
requested variables entered.
|
Model
Summary
|
||||
Model
|
R
|
R Square
|
Adjusted
R Square
|
Std.
Error of the Estimate
|
1
|
,484a
|
,234
|
,180
|
9,276
|
a.
Predictors: (Constant), Berat Badan (Kg)
|
ANOVAa
|
||||||
Model
|
Sum of
Squares
|
df
|
Mean
Square
|
F
|
Sig.
|
|
1
|
Regression
|
368,798
|
1
|
368,798
|
4,286
|
,057b
|
Residual
|
1204,639
|
14
|
86,046
|
|
|
|
Total
|
1573,437
|
15
|
|
|
|
|
a.
Dependent Variable: Glukosa (mg/100ml)
|
||||||
b.
Predictors: (Constant), Berat Badan (Kg)
|
Coefficientsa
|
||||||
Model
|
Unstandardized
Coefficients
|
Standardized
Coefficients
|
t
|
Sig.
|
||
B
|
Std.
Error
|
Beta
|
||||
1
|
(Constant)
|
61,877
|
19,189
|
|
3,225
|
,006
|
Berat
Badan (Kg)
|
,510
|
,246
|
,484
|
2,070
|
,057
|
|
a. Dependent
Variable: Glukosa (mg/100ml)
|
Persamaan
garis :
Glukosa = 61,877+ 0,510 BB
Hipotesa
:
Uji
Statistik :
Keputusan
statistik :
Kita
menerima Hipotesa nol
Kesimpulan
: Slop garis regresi sama dengan 0 maka garis regresi antara BB dan Glukosa
adalah tidak linier.
Latihan
3
a) Jelaskan
asumsi-asumsi tentang analisa regresi sederhana bila kita ingin membuat
inferensi tentang populasi dari data yang kita punyai.
b) Mengapa
persamaan regresi disebut ‘the least square equation’
c) Jelaskan
tentang β0 pada persamaan regresi
d) Jelaskan
tentang β1 pada persamaan regresi
Jawab :
0 komentar:
Posting Komentar